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WHY RANDOM TELEGRAPH SIGNAL?

• Becoming more significant as image sensor 
fabrication becomes more sophisticated at 
reducing noise sources

• Leads to ‘blinking pixels’ similar to the ‘snow’ 
seen on old TV sets

• Observed in a variety of physical processes 
including ion transport in biological membranes 
and single molecule chemical reactions

• Physically tiny change that leads to 
macroscopic consequences 

• Balls don’t jump over hills!
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INTRODUCTION

• Image sensors basic structures

• Introduction to random telegraph signal noise and 
its key parameters

• Convolutional Filtering reconstruction method

• Discrete wavelet transform and signal 
reconstruction algorithm

• Machine learning modeling and reconstruction 
algorithm

• Experimental Results

• Conclusion
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BASIC CMOS IMAGE SENSOR STRUCTURE (3T)

• Microlens and filter

• P+ pinning layer

• PN Junction

• P- layer 

• Oxide & Interface
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BASIC CMOS IMAGE SENSOR OPERATION (3T)

• Reset pulse

• Photodiode collection

• Source Follower 

• Row Select

• Column Bus
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RTS NOISE - OVERVIEW

• Defined by discrete 
changes in signal level

• Stochastic process 

• Characterized by similar 
time constants
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Dark signal output from a single pixel, 1500 samples



PHYSICS OF RTS NOISE

• Source Follower RTS Noise

• Trapping/De-trapping of charges 
changes 𝑉𝐺𝑆 of the SF-transistor

• Capture state → lowered mobility →
lowered conductivity:

• Time constants are governed by 
Shockley Read Hall statistics

• Capture State →
1

𝜏𝑐
= 𝜎𝑡 ҧ𝑣𝑛

• Emission State →
1

𝜏𝑒
= 𝜎𝑡 ҧ𝑣𝑁𝑐 exp

𝐸𝑡

𝑘𝑇

𝜎 = 𝜇𝑛𝑞
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PHYSICS OF RTS NOISE (CONT.)

• Dark Current RTS Noise
• Origin – metastable Shockley-Read-Hall 

generation/recombination centers

• Identified by 𝑡𝑖𝑛𝑡 dependence, large 
amplitudes,  and very large time 
constants

• Radiation damage effect
• Protons typically create DC-RTS centers in bulk

• X-rays/𝛾-rays typically create DC-RTS centers 
on Si-SiO2 interface
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KEY PARAMETERS

• Primary RTS characteristics
• State lifetime (time 

constant)
• RTS amplitude

• No well defined limits in 𝜏
and 𝐴 for RTS signals

• Small 𝜏’s and 𝐴’s make RTS 
transitions difficult to 
distinguish from normal 
Gaussian noise 

9

𝜏𝐻𝑖𝑔ℎ

𝐴

𝜏𝐿𝑜𝑤



EXPERIMENTAL PARAMETERS

• COTS Omnivision OV5647

• Raw frames taken using a Raspberry 
Pi 3

• Five sensors irradiated with a 
continuum of high energy 𝛾 and x-
rays (peak - 2𝑀𝑒𝑉)

• Six second integration time

• 1500 frames taken at 0.05 frames/s

• ~ 8.3 hours total measurement 
time

• Frames taken in dark at 32°C

Absorbed Ionizing 

Dose (rad – Si)

500

2,500

5,000

10,000

25,000
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EXPERIMENTAL GOALS

• Each pixel is treated as its own separate device

• 10 megapixel camera → 10 million devices

• Amplitudes and lifetimes are collected and sorted

• Patterns begin to emerge
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RESULTS - AMPLITUDES

• Amplitudes up to 350 𝑒−/𝑠
observed

• Similar shape of curves 
indicates that higher doses 
increase the likelihood of 
creating an RTS center, but 
the amplitude probability for 
a center is set

• No correlation seen between 
RTS amplitude and time 
constants
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RESULTS –
TIME CONSTANTS

• Time constants are 
calculated by averaging the 
time spent in the high or low 
states

• Both high and low states 
display an exponential 
distribution

• The low state time constant 
distribution is slightly flatter 
than the high state, 
indicating that the low state 
is the more stable of the two
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RESULTS – SECOND-ORDER DEFECT 
GENERATION

• The number of RTS centers 
increases ~quadratically 
with absorbed dose

• This indicates that the 
particular defect
responsible for this RTS noise 
is of second-order

• There is a precedent for this 
kind of defect, specifically 
the double vacancy 
oxygen (𝑉2𝑂) complex1
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[1] I. Pintilie, E. Fretwurst, G. Lindström, J. Stahl,  “Second-order generation of point defects in gamma-irradiated float-zone 
silicon, an explanation for ‘type inversion’,” Applied Physics Letters, vol. 82, pp. 2169-2171, Mar. 2003.



SIGNAL RECONSTRUCTION

• Makes 
collection of 
key 
parameters 
trivial

• Zero white 
noise 
contribution

• Perfect RTS 
representation 
in shape and 
scale
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CONVOLUTION METHOD

• Code provided 
by V. Goiffon 
et. al. (2009)
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CONVOLUTION METHOD – CONT.

• Applies a step shaped filter to a 
signal

• Detects RTS if 𝐴𝑚𝑎𝑥 > 𝜎𝑠𝑖𝑔

• Measures the mean value 
between spikes to estimate RTS 
signal levels

• Sorts RTS levels and approximates 
Gaussian noise-free RTS signal
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THE HAAR WAVELET & DISCRETE 
WAVELET TRANSFORM

• An orthonormal basis set 
developed by Alfred Haar in 1909

• Left largely in obscurity until 
DeBauchies pioneering work 
constructing and using wavelets 
for digital signal processing and 
analysis

• DWT Useful for edge detection 
applications
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WAVELET ANALYSIS – DWT

• The discrete wavelet transform (DWT) breaks 𝐟 of 
length N into two ‘daughter’ sequences of 
length N/2

• Trend Sequence Members

• 𝑎𝑚 =
𝑓2𝑚−1+𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2

• Details Sequence Members

• 𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

√2
1 < 𝑚 ≤ 𝑁/2
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J. S. Walker, A Primer on Wavelets and their Scientific Applications. 

Boca Raton [Fla.]: Chapman & Hall/CRC, 2nd ed., 2008.



HAAR WAVELET ANALYSIS – DWT (CONT.)

• The DWT is similar to a microscope 
because it is repeatable
• The trend sequence is treated as the 

new ‘mother’ signal

• Multiresolution analysis

• Each time a subsequent transform 
is performed the ‘daughter’ 
sequences are of half size
• The new ‘daughter’ sequence 

represents twice as many values from 
the original signal

20



THE INVERSE TRANSFORM

𝐟 = (
a1 + 𝑑1

√2
,
a1 − 𝑑1

√2
,…

a𝑁
2
+ 𝑑𝑁

2

√2
,

a𝑁
2
− 𝑑𝑁

2

√2
)
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DWT DENOISING METHOD

• White noise is suppressed by thresholding 
the details sequence

• Similar to a high-pass/low-pass filter

• Based on magnitude rather than 
frequency

• The threshold is statistically derived 

• T is the universal threshold derived by 
Donoho and Johnstone†

• Values below the threshold are set to zero
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T = ෝσ 2 log 𝑛

† G. P. Nason, “Choice of the threshold parameter in wavelet function 

estimation,” Wavelets and statistics, vol. 103, pp. 261–280, 1995.



DWT DENOISING METHOD

• The signal is run through 
the DWT denoising method 
as described 

• The white noise is greatly 
reduced, but a few 
transients remain
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DWT DENOISING METHOD
• To remove transients, a simple 

running comparison is 
implemented to verify the 
stability of a transition

• When a change in signal occurs 
at frame 𝑘, its value is compared 
to the next 𝑙 frames where 𝑙 = 10

• If the value is unchanged the 
transition is considered stable 
and left alone

• If the value changes is 
considered a transient, and is 
changed to the value at frame 
𝑘 − 1
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DWT DENOISING METHOD

• Nearly all of the white noise is 
removed, but a few small changes 
remain

• A new details sequence is creating 
by subtracting each frame value 
by the previous frame value

• The new details sequence 𝑠 is of 
𝑁 − 1 where 𝑁 is the size of the 
original signal

• Because the noise is already 
suppressed, the threshold need not 
be so discriminatory, as such
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𝑇𝑠 = 𝑠𝑀𝐴𝑋 ∗ 𝑢0.75



DWT DENOISING METHOD

• Inverse DWT is performed 
on heavily the 
thresholded signal

• Mean levels are sorted 
and a Gaussian noise 
free signal is constructed
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DEEP LEARNING ANALYSIS

• Convolutional filters are used again

• The filters aren’t necessarily step shaped

• Filter shapes start random, and are altered during the 
‘learning’ process

• Models are trained by minimizing some cost, or error 
function

• Results from convolutions are always run through some 
activation function → non-linearity
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MACHINE LEARNING METHOD

• RTS signals are detected and approximated using convolutional 
neural networks

• RTS detection is performed by a classification model
• Similar to image classification

• Takes a signal and returns a zero for RTS or one for non-RTS

• WN reduction is performed by an autoencoder
• Trained by creating gaps in signals, and ‘learning’ the best way to fill in 

those gaps  

• Takes a noisy signal and returns a cleaner signal

• Both models are trained on simulated data
• 90,000 RTS signals and 90,000 Gaussian noise only signals 

• 89,000 of each in the training set, 1,000 for the testing set

• RTS signals have a distribution of amplitudes and state lifetimes

• Gaussian noise is added over the transitions
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MACHINE LEARNING METHOD

• The ML method requires special data 
preparation to work properly

• The training and input signals need to be 
rescaled between zero and one so that 
only the shape of the signals (RTS), not the 
magnitude, offers the defining signal 
characteristics

• Each value in the signal 𝑥 is subtracted by 
a number just below the minimum of the 
signal creating a new vector 𝑥𝑠

• Then, 𝑥𝑠 is divided by a number just above 
its maximum to create the scaled vector 
𝑥𝑠𝑑

• Because the scaling must be reversable, a 
key is maintained of scaling constants for 
each signal
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𝑥𝑠 = 𝑥 − (0.99 ∗ min(𝑥))

)𝑥𝑠𝑑 = Τ𝑥𝑠 ( 1.01 ∗ max 𝑥𝑠



MACHINE LEARNING METHOD

• Signal classifier works similarly 
to image classifiers

• Developed in Python using a 
Keras wrapper over Tensorflow

• Convolutional layers extract 
prominent features and use 
them to differentiate RTS from 
non-RTS

• The convolutional layers use 
the ‘relu’ activation function 
while the final layer uses a 
sigmoid to force a choice 
between zero and one
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𝐶𝑜𝑛𝑣 32,12 → 𝑃𝑜𝑜𝑙 3 → 𝐷𝑟𝑜𝑝 0.5 →

𝐶𝑜𝑛𝑣(64,12) → 𝑃𝑜𝑜𝑙(3) → 𝐷𝑟𝑜𝑝(0.5) →

𝐶𝑜𝑛𝑣(128,12) → 𝑃𝑜𝑜𝑙() → 𝐷𝑟𝑜𝑝(0.5) →

)𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(1
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MACHINE LEARNING METHOD

• The autoencoder squeezes the noisy 
signal, extracting and prioritizing 
prominent features with 
convolutional and pooling layers

• It then expands the signal to original 
size and creates gaps with 
upsampling

• The model is trained to fill the gaps 
with a series of ‘wrong’ noisy signals 
and a corresponding set of ‘correct’ 
clean signals

• Each convolutional layer used the 
‘relu’ activation function while the 
last layer uses the linear function to 
avoid zero values in the 
reconstructed signal
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𝐶𝑜𝑛𝑣 64,12 → 𝑃𝑜𝑜𝑙 3 →

𝐶𝑜𝑛𝑣 32,12 → 𝑃𝑜𝑜𝑙 3 →

𝐶𝑜𝑛𝑣 32,12 → 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 3 →

𝐶𝑜𝑛𝑣 64,12 → 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒() →

𝐹𝑢𝑙𝑙𝑦 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 1500

Layertype(NumFilters,KernelSize)



33



MACHINE LEARNING METHOD
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MACHINE LEARNING 
METHOD

• To finish approximation with the ML 
method, a histogram is created 
from the autoencoder output

• The result is fitted as the sum of two 
Gaussian distributions

• The peaks are taken as the RTS 
signal levels, and the signal is 
reconstructed where each sample 
from the autoencoder snaps to its 
closest value from the histogram fit
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TESTING PROCEDURE

• Each method is tested for detection and 
approximation on a data block of 90,000 
simulated RTS signals 

• The signals begin clean, then have 
Gaussian noise added over the top

• One dimension of the block spans the 
signal to noise, defined as RTS 
amplitude/white noise floor, from ~zero 
to 6

• The other dimension spans the state 
lifetime of a signal from 1 to 300 samples

• The approximation of each signal is 
scored by its correlation coefficient 
against the noiseless version of input 
signal 

• Each method is tested for false positive 
detection on a block of 90,000 non-RTS 
signals
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𝐶𝑥𝑦 =
Σ 𝑥 − 𝑥 𝑦 − 𝑦

Σ 𝑥 − 𝑥 2 Σ 𝑦 − 𝑦 2
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RESULTS – CONVOLUTION METHOD

• Reliably works with 𝑆𝑁𝑅 > ~2
and 𝜏 > ~50 frames

• 66% RTS detection rate

• Mean 𝐶𝑥𝑦 of for detected 
signals: 0.9474

• Zero(!) non-RTS false positives
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Detection Correlation



RESULTS – WAVELET METHOD

• Reliably works with 𝑆𝑁𝑅 > ~2
and 𝜏 > ~50 frames

• 86.6% RTS detection rate

• Mean 𝐶𝑥𝑦 of for detected 
signals: 0.8644

• 21.7% non-RTS false positive 
detection
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Detection Correlation



RESULTS – MACHINE LEARNING METHOD

• Reliably works with 𝑆𝑁𝑅 > ~1
and 𝜏 > ~25 frames

• 83.5% RTS detection rate

• Mean 𝐶𝑥𝑦 of for detected 
signals: 0.9780

• Zero(!) non-RTS false positives
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Detection Correlation



RESULTS – CORRELATION COMPARISON

• Direct comparison of the 
three methods

• All three perform well for 
signals 𝑆𝑁𝑅 > 2 and 𝜏 > 50
frames

• ML method performs reliably 
at half of those limits
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RESULTS - DISCUSSION

• Convolution

• Threshold: High

• Correlation: High

• Wavelets

• Threshold: Low

• Correlation: Low

• Machine Learning

• Threshold: Low

• Correlation: High
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Correlation Range Convolution 

Counts

Wavelet Counts M.L.

Counts

0 < 𝐶𝑥𝑦 < 0.4 6 5,342 68

0.4 ≤ 𝐶𝑥𝑦 < 0.6 162 3,746 257

0.6 ≤ 𝐶𝑥𝑦 < 0.7 674 2,772 251

0.7 ≤ 𝐶𝑥𝑦 < 0.8 2,404 3,755 730

0.8 ≤ 𝐶𝑥𝑦 < 0.9 5,271 6,460 2,523

0.9 ≤ 𝐶𝑥𝑦 < 0.99 42,660 47,600 21,613

𝐶𝑥𝑦 ≥ 0.99 8,143 8,274 49,659Ideal



THANKS FOR LISTENING

• Questions?
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BACKUP SLIDES

44



45



46



47



48



WAVELET OPERATORS – TRENDS SEQUENCE

•𝐕1
1 =

1

2
1,1,0,0,0, … ; 𝐕2

1 =
1

2
0,0,1,1,0, …

𝑎1 =
𝑓1+𝑓2

√2
= 𝐟 ⋅ 𝐕1

1;  𝑎2 =
𝑓3+𝑓4

√2
= 𝐟 ⋅ 𝐕2

1

𝑎𝑚 =
𝑓2𝑚−1 + 𝑓2𝑚

√2
= 𝐟 ⋅ 𝐕𝑚

1
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WAVELET OPERATORS – DETAILS SEQUENCE

•𝐖1
1 =

1

2
1,−1,0,0,0, … , 𝐖2

1 =
1

2
0,0,1, −1,0,…

𝑑1 =
𝑓1−𝑓2

√2
= 𝐟 ⋅ 𝐖1

1
; 𝑑2 =

𝑓3−𝑓4

√2
= 𝐟 ⋅ 𝐖2

1

𝑑𝑚 =
𝑓2𝑚−1−𝑓2𝑚

√2
= 𝐟 ⋅ 𝐖𝑚

1
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