RANDOM TELEGRAPH SIGNAL: NON-LINEAR
DYNAMICS AND NON-LINEAR ANALYSIS




~ WHY RANDOM TELEGRAPH SIGNAL? 2

* Becoming more significant as image sensor
fabrication becomes more sophisticated at
reducing Noise sources

* Leads to ‘blinking pixels’ similar to the ‘snow’
seen on old TV sefts

» Observed in a variety of physical processes
INncluding ion fransport in biological membranes
and single molecule chemical reactions

* Physically tiny change that leads to
MACroscopic consequences

 Balls don’t jump over hills!




T INTRODUCTION

* Image sensors basic structures

 Intfroduction to random telegraph signal noise and
Its key parameters

« Convolutional Filtering reconstruction method

- Discrete wavelet fransform and signal
reconstruction algorithm

* Machine learning modeling and reconstruction
algorithm

» Experimental Results
« Conclusion



/’ﬂ
IMAGE SENSOR STRUCTURE (3T)

Micro-lens Color Filter

* Microlens and filter
* P+ pinning layer

* PN Junction

« P-layer

» Oxide & Interface




BASI

* Reset pulse

* Photodiode collection
» Source Follower

 Row Select

« Column Bus

C CMOS IMAGE SENSOR OPERATION (3T) °
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"PHYSICS OF RTS NOISE

« Source Follower RTS Noise
» Trapping/De-trapping of charges
changes V¢ of the SF-transistor

« Capture state — lowered mobility —
lowered conductivity: g = ung

« Time constants are governed by
Shockley Read Hall stafistics

« Capture State — 2 = o UNn

Tc

* Emission State — T—le = 0, UN, exp (If—;)




OF RTS NOISE (CONT.)

Micro-lens Color Filter

 Dark Current RTS Noise

« Origin — metastable Shockley-Read-Hall
generation/recombination centers

* |dentified by t;,; dependence, large
amplitudes, and very large time
constanfts

« Radiation damage effect

« Protons typically create DC-RTS centers in bulk

« X-rays/y-rays typically create DC-RTS centers : —
on Si-SiO2 interface Space Charge Region




* Primary RTS characteristics

« State lifetime (time
constant)

« RTS amplitude

« No well defined Iimitsin t
and A for RTS signals

e Small T's and A’'s make RTS
transitions difficult o
distinguish from normal
Gaussian noise




"EXPERIMENTAL PARAMETERS

« COTS Omnivision OV5647

« Raw frames taken using a Raspberry
Pi 3

* Five sensors irradiated with a

continuum of high energy y and x-
rays (peak - 2MeV)

 Six second integration time

* 1500 frames taken at 0.05 frames/s

« ~ 8.3 hours total measurement
time

 Frames taken in dark at 32°C




* EXPERIMENTAL GOALS

« Each pixel is treated as its own separate device

« 10 megapixel camera — 10 million devices

« Amplitudes and lifetimes are collected and sorted
« Patterns begin to emerge



RESULTS © AMPLITUDES

« Amplitfudes up to 350 e~ /s
observed

» Similar shape of curves
iIndicates that higher doses
Increase the likelihood of
creating an RTS cenfter, but
the amplitude probability for
a cenfter is set

 No correlation seen between
RTS amplitude and time
constants
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TIME CONSTANITS

* Time constants are
calculated by averaging the
time spent in the high or low
states o

« Both high and low states
display an exponential
distribution

* The low state time constant
distribution is slightly flatter
than the high state,
indicating that the low state
Is the more stable of the two
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DER DEFECT : <

RESULTS —
GENERATION

« The number of RTS centers
increases ~quadratically @ &rs counts
with absorbed dose — Slope = 1.92

* This indicates that the
particular defect

responsible for this RTS noise
IS of second-order

* There is a precedent for this
kind of defect, specifically
the double vacancy
oxygen (V,0) complex!

10° 104
Absorbed Dose - Si

[1] I. Pintilie, E. Fretwurst, G. Lindstrém, J. Stahl, “Second-order generation of point defects in gamma-irradiated float-zone
silicon, an explanation for ‘type inversion’,” Applied Physics Letters, vol. 82, pp. 2169-2171, Mar. 2003.



SIGNALRECONSTRUCTI

« Makes
collection of
key
parameters
trivial

« /ero white

noise
contribution

» Perfect RTS
representation
in shape and
scale

O




CONVOLUTION METHO

» Code provided

by V. Goiffon Multilevel RTS 1n Proton Irradiated CMOS
et. al. (2009) Image Sensors Manufactured in a Deep

Submicron Technology

V. Goiffon, Member, IEEE, G. R. Hopkinson, Member, IEEE, P. Magnan, Member, IEEE, F. Bernard,
G. Rolland, and O. Saint-Pé




« Applies a step shaped filter to @
signal

* Detects RTS it A, > 04

e Measures the mean value
between spikes to estimate RTS
signal levels

« Sorts RTS levels and approximates
Gaussian noise-free RIS signal




HE HAARWYAVELET & DISCRETE S
WAVELET TRANSFORM

 An orthonormal basis set
developed by Alfred Haar in 1909

 Left largely in obscurity untll
DeBauchies pioneering work
constructing and using wavelets
for digital signal processing and
analysis

« DWT Useful for edge detection
applications




WAVELETANALYSIS — DWT “ll

* The discrete wavelet transform (DWT) breaks f of e
length N into two ‘daughter’ sequences of
length N/2

* Trend Sequence Members —
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J. S. Walker, A Primer on Wavelets and their Scientific Applications.
a Raton [Fla.]: Chapman & Hall/CRC, 2nd ed., 2008.



- HAAR WAVELET ANALYSIS — DWT (CONT.)

* The DWT is similar fo a microscope
because it is repeatable

* The trend sequence is tfreated as the
new ‘mother’ signal

* Multiresolution analysis

« Each fime a subsequent transform
Is performed the ‘daughter’
sequences are of half size

* The new ‘daughter’ sequence
represents twice as many values from
the original signal
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DENOISING METHOD

DWT

« White noise is suppressed by thresholding
the details sequence

« Similar to a high-pass/low-pass filter

» Based on magnitude rather than
frequency

* The threshold is statistically derived
T = 6\/2 log(n)
* T is the universal threshold derived by
Donoho and Johnstonet

 Values below the threshold are set to zero
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Details Vector Coefficients

T G. P. Nason, “Choice of the threshold parameter in wavelet function
estimation,” Wavelets and statistics, vol. 103, pp. 261-280, 1995.



DWT DENOISING METHOD

« The signalis run through
the DWT denoising method
as described l H ‘

 The white noise is greatly eI | g H \
reduced, but a few : " '{ ’ ‘ ‘
transients remain

Il :
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DWT DENOISING METHO

« To remove transients, a simple
running comparison is
Implemented to verify the
stability of a tfransition

« When a change in signal occurs
at frame k, its value is compared
to the next | frames where [ = 10

* If the value is unchanged the
transition is considered stable
and left alone

* If the value changes is
considered a transient, and is
changed to the value at frame
k—1

Signal DN




'DWT DENOISING METHOD

* Nearly all of the white noise is
removed, but a few small changes
remain

* A new details sequence is creating
by subtracting each frame value
by the previous frame value

* The new details sequence s is of
N — 1 where N is the size of the
original signal

* Because the noise is already
suppressed, the threshold need not
be so discriminatory, as such

Details Vector Coefficients
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DENOISING METH

 Inverse DWT is performed
on heavily the
thresholded signal

* Mean levels are sorted
and a Gaussian noise
free signal is constructed




DEEP LEARNING ANALYSIS

« Convolutional filters are used again
* The filters aren’t necessarily step shaped

* Filter shapes start random, and are altered during the
‘learning’ process

* Models are frained by minimizing some cost, or error
function

« Results from convolutions are always run through some
activation function —» non-linearity



MAC

INE LEARNING METHOD

RTS signals are detected and approximated using convolutional
neural networks

RTS detection is performed by a classification model
« Similar to image classification
« Takes a signal and returns a zero for RTS or one for non-RTS

WN reduction is performed by an autoencoder

* Trained by creating gaps in signals, and ‘learning’ the best way to fill in
those gaps

« Takes a noisy signal and returns a cleaner signal

Both models are tfrained on simulated data
* 90,000 RTS signals and 90,000 Gaussian noise only signals
* 89,000 of each in the training set, 1,000 for the testing set
« RTS signals have a distribution of amplitudes and state lifetimes
o Gaussian noise is added over the transitions

28



 The ML method requires special data
preparation to work properly

* The training and input signals need 1o be
rescaled between zero and one so that

E—— B
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ETHOD

only the shape of the signals (RTS), not the . :
moéni’rude,,%ffers the efininé; sig%nol xs = x — (0.99 * min(x))
characteristics

« Each value in the signal x is subtracted by

a number just below the minimum of the
signal creating a new vector x,

Xoqg = Xs/(1.01 * max(xy))

« Then, x, is divided by a number just above

its maximum to creadte the scaled vector
Xsd

« Because the §coling? must be reversable, @

key is maintained of scaling constants for

each signal



"MACHINE LEARNING

 Signal classifier works similarly
to image classifiers

» Developed in Python using a
Keras wrapper over Tensorflow

« Convolutional layers extract
prominent features and use
them to differentiate RTS from
Nnon-RTS

* The convolutional layers use
the ‘relu’ activation function
while the final layer uses a
sigmoid to force a choice
between zero and one

METHO

Conv(32,12) - Pool(3) —» Drop(0.5) —

Conv(64,12) — Pool(3) = Drop(0.5) -
Conv(128,12) — Pool() = Drop(0.5) -

Fully Connected(1)
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 MACHINE LEARNING METHOD

* The autoencoder squeezes fhe noisy  Layertype (NumfFilters,KernelSize)
signal, extracting and prioritizing
prominent features with
convolutional and pooling layers Conv(64,12) — Pool(3) -

* |t then expands the signal to original
size and creates gaps with
upsampling

 The model is trained to fill the gaps
with a series of ‘wrong’ noisy signals

Conv(32,12) » Pool(3) —»

Conv(32,12) - Upsample(3) —

and a corresponding set of ‘correct’ Conv(64,12) - Upsample() —
clean signails
« Each convolutional layer used the Fully Connected (1500)

‘relu’ activation function while the
last layer uses the linear function to
avoid zero values in the
reconstructed signal



Convolution

L1: L2: L3:
Feature Maps Pooled Maps Feature

aps
1500 x64 500 x64 500 x32

Convolution

L4:
Pooled Maps
166 x32

Convolution

L5:
Feature Maps
166 x32

Upsampling

L6: L7:
Upsampled Maps Feature Maps
500 x32 500 x64

Convolution Upsampling

L8:
Feature Maps
1500 x64

Fully Connected

OUTPUT
1500 x1




MACHINE LEARNING METHOD




- MACHE LEARNING

METHOD

« To finish approximation with the ML
method, a histogram is created
from the autoencoder output

 The result is fitted as the sum of two
Gaussian distributions

2800

» The peaks are taken as the RTS
signal levels, and the signal is
reconstructed where each sample
from the autoencoder snaps 1o its
closest value from the histogram fif 2400
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"TESTING PROCEDURE

« Each method is tested for detection and
approximation on a data block of 20,000
simulated RTS signails

« The signals begin clean, then have
Gaussian noise added over the top

« One dimension of the block spans the
signal to noise, defined as RT
Jcrjmépll’rude/whl’re noise floor, from ~zero

o)

« The other dimension spans the state
lifetime of a signal from 1 to 300 samples

* The approximation of each signal is
scored by its correlation coefficient
qgcmr?s’r the noiseless version of input
Jlelgle

 Each method is tested for false positive
de’reclz’non on a block of 20,000 non-RTS
signals
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NVOLUTION METHOD

Reliably works with SNR > ~2 Detection Correlation
and T > ~50 frames

66% RTS detection rate

Mean C,, of for detected
signals: 0.9474

Zero(l) non-RTS false positives
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—WAVELET METHOD

« Reliably works with SNR > ~2 Detection Correlation

and T > ~50 frames
* 86.6% RTS detection rate

- Mean C,,, of for detected
signals: 0.8644

« 21.7% non-RTS false positive
detection
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ACHINE LEARNING METHOD )

Reliably works with SNR > ~1 Detection Correlation
and t > ~25 frames

83.5% RTS detection rate

Mean C,, of for detected
signals: 0.9780

Zero(l) non-RTS false positives
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RESULTS — CORRELATION COMPARISON

Correlation Coefficient - Convolution

« Direct comparison of the
three methods

« All three perform well for
signals SNR > 2 and t > 50
frames

ML method performs reliably
at half of those limits
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RESULTS -

« Convolution
« Threshold: High
« Correlation: High

« Wavelets
 Threshold: Low
« Correlation: Low

* Machine Learning
« Threshold: Low
« Correlation: High

Ideal 4

DISCUSSION

/’ﬂ

xy =

Correlation Range | Convolution | Wavelet Counts M.L.
Counts Counts

0 < Cyy < 0.4 6 5,342 68

04<Cy <06 | 162 3,746 257

0.6 <Cy, <07 | 674 2,772 251

0.7 < Cy, <08 | 2,404 3,755 730
0.8<Cy, <09 | 5271 6,460 2,523
0.9 < Cy, <0.99| 42,660 47,600 21,613
Cyy = 0.99 8,143 8,274 49,659

42
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THANKS FOR LISTENING

« Questions?
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VAVELET OPERATORS — TRENDS SEQUENCE

wul 1 .yl 1
Vi==2(1,1000,..); V} ==(0,0,1,10,...)
fi+f fotf
a1: 1\/22:f'V1 a2—3\/24—f VZ
~ fam-1t fom
TR

_f.vVL




VAVELET OPERATORS — DETAILS SEQUENCE

W1 = 715(1, ~1,0,0,0,...), Wl = %(0,0,1, ~1,0,...)

d, = fl\;zfz _f. wll; d, = f3\;2f4 —f. W21

- me—\}Z_me = f. WL
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